十年前,2009年美国国家科学基金会公布了生物增材制造发展路线图,其中预测,2-3年,实现植入物,假肢,支架和细胞打印;5年,实现病/药理模型打印;10年,实现功能组织打印;15年,实现器官打印。
今年是2019年,10年之约如期而至。正如科学家们的预言一样,今年是生物3D打印领域的全方位爆发元年。2019年,我们见证了生物3D打印首次发表Science和Nature主刊,以及上百篇SCI期刊文章;我们见证了各位科研工作者一次又一次地颠覆了我们的想象,将一个个颇为科幻的技术拉入到现实之中。我们完全有理由期待,未来的生物3D打印技术会与我们的想象越来越近,更早地应用在我们的医疗之中。
- 1月31日,美国加州大学伯克利分校和劳伦斯利佛摩国家实验室的有研究者联合在Science发表重磅成果,其利用一种计算轴向光刻(CAL)方法,通过多角度的曝光图像叠加,使材料能够从模型的内部逐渐向外部固化,实现了“凭空”立体打印。
- 5月3日,美国莱斯大学Jordan Miller教授与华盛顿大学Kelly Stevens教授合作发表了生物3D打印的第一篇NCS,利用高精度的光刻技术提供了复杂的血管化网络结构的构建方法,为复杂组织器官的构建成为可能。
- 11月13日,哈佛大学Jennifer Lewis教授课题组,在Nature发表了使用多材料多喷嘴3D打印技术设计和制造体素化软结构的过程,该技术可实现八种不同的材料的高频切换,构建了折纸图案,机器人,复杂多材料立方体等众多复杂异质结构。其一体化高速打印的多材料机器人后续还可实现机器运动,令人耳目一新。
- 2019年,美国加州大学圣地亚哥分校Chen Shaochen教授课题组和Tuszynski课题组合作采用微尺度连续投影光刻法(μCPP) 3D打印了高精度的脊髓修复支架。种植神经祖细胞(NPC)的脊髓支架在脊髓损伤模型内可以支持轴突再生,帮助损伤脊髓再生修复。
- 10月18日,Science发表美国西北大学关于一种大面积快速打印技术(high-area rapid printing,HARP)的最新成果,可以高速在几个小时内打出成人大小的结构。
- 2019年03月18日,韩国科学家Dong Woo Cho教授团队用多喷头3D打印技术,构建了一个高度仿真的梯度厌氧胶质瘤模型,并且用该模型培养肿瘤患者的细胞,化疗的效果与患者实际化疗效果一致。
- 哈佛大学Wyss研究所报道了一种在3D打印的微流控芯片内培养肾脏类器官的方法,该方法可扩大内皮祖细胞的内源池并产生具有被壁细胞包围的可灌注腔。和静态培养相比,研究者发现在微流体流动条件下培养的血管化肾脏类器官具有增强的细胞极性和人基因表达的成熟足细胞和肾小管区室。在体外微流条件下诱导肾类器官实质性血管生成和形态成熟的能力为研究肾脏发育,疾病和再生开辟了新途径。